Characterization of PM Dynamics for CCOS/CRPAQS Domain

Ahmet Palazoglu (P.I.) Angadh Singh

University of California, Davis

CCOS/CRPAQS TC Kickoff Meeting December 15, 2009

Overview

- Study Goals
- Surface Wind Field Clustering
- Bay Area PM Clustering Results
- Cluster Analysis for CCOS Domain Project
 - Project Work Plan
 - Recent Progress and Future Work

Goals of the Study

- To identify and label domain-wide winter-time meteorological regimes
 - Perform surface wind field clustering.
 - Develop physical characterization of clusters.
- To infer the winter PM response to identified meteorological conditions
 - Infer physical mechanisms affecting PM levels.
 - Characterize evolution of individual species under regimes of interest.

Surface Wind Field Clustering

- Requires continuous, hourly surface wind data
 - Spatially representative
 - Temporally complete
- Labels each day based upon diurnal air flow
 - Indicates mesoscale flow patterns
 - Identifies synoptic regimes
 - Allows inference of criteria pollutant response to meteorology

Previous Contract – 061CCOS

- Statistical clustering and sequencing algorithms applied to surface wind measurements.
- Characterized episodic meteorological conditions for 6 CCOS subregions
 - 1. San Francisco Bay Area (SFBA)

UCDAVIS

- North, Central and Southern San Joaquin Valley (N-SJV, C-SJV & S-SJV).
- 3. Sacramento Valley and Mountain Counties (SV & MC).
- Explored CCOS domain-wide Inter-basin meteorological transport impacts on ozone levels.
- Cluster analysis provided considerable insight into weather patterns during Central California summer ozone season.

Pilot Study: Bay Area PM

San Francisco Bay Area, CA

Meteo 1 234567890 1123456789 101123144 1561789 201223 22425	1 Napa STP 2 Oakland STP 3 Pleasanton STP 4 Pt. San Pablo 5 Rio Vista 6 San Carlos 7 San Francisco STP 8 San Martin APT 9 Santa Rosa APT 0 Sonoma Baylds 1 Suisun STP 2 Sunol 3 Tesoro(Golden Eagle) 4 UC Richmond			
PM M A2B8CDEFGHIJKLM	onitors (A or +) Bethel Island Concord Fremont Livermore Napa Oakland Pittsburg Redwood City San Francisco San Jose-4th St San Jose-Tully San Pablo San Rafael Santa Rosa Vallejo	BAM 1-day 1-day 1-day 1-day 1-day	PM _{2.5} 1-day 3-day 3-day 1-day 1-day 1-day 3-day 3-day	PM ₁₀ 6-day 6-day 6-day 6-day 6-day 6-day 6-day 6-day 6-day 6-day

Meteorological and Air Quality Data

Wind data

- Study period: 1996-2007 (Nov 1 Mar 31)
- 26 sites monitoring wind speed and direction

PM data

- PM_{2.5} and PM₁₀ measurements available on a 3-day or 6-day schedule
- Speciated PM_{2.5} data at San Jose on a 6-day schedule

Other data

- Surface temperature and precipitation data
- NCEP/NCAR Reanalysis weather maps

500-hPa Cluster Composites

Surface Air Flow Patterns for Clusters

Clusters with PM_{2.5} exceedances

• R2: 82% of days

• R3: 14% of days

Temperature and Precipitation by Cluster

• R2 has reduced overnight temperatures at inland sites

UCDAVIS

Z accounts for most of the annual precipitation in the Bay Area

PM_{2.5} Response for Clusters

• PM₁₀ response is similar

Speciated PM_{2.5} Response for Clusters

- Dominant species response similar as for total PM_{2.5}
- CI and Na levels are highest under marine air flows (V and Z)

Episode Analysis

- PM levels increase over 2-3 days and level off under conducive conditions
- PM levels rapidly decline upon transition to Z

Inter-annual Trend Analysis

Conclusions and Future Work

- Bay Area PM levels were strongly impacted by meteorology
 - Large scale synoptic influences.
 - Regional thermal effects.
- Total PM levels indicate that dispersion varies by cluster
 - R2 and R3 trigger the bulk of exceedances.
 - R1 has strong winds, but moderate PM levels.
 - V and Z have the lowest PM levels.
- Speciated PM_{2.5} data indicate source-receptor relationships vary by cluster
 - R3 has the highest proportion of secondary PM_{2.5}.
 - V and Z have the most sea spray
- PM₁₀ response is similar to PM_{2.5}.
- Future work
 - Further delineate differences in primary and secondary PM buildup for R2 and R3.
 - Evaluate AQM simulation performance for different clusters.

Cluster Analysis for CCOS/CRPAQS Domain

Proposed Analysis Framework

Study Domain

- Independent cluster analyses for 5 basins
 - Sacramento Valley (SV) & Mountain Counties (MC)
 - San Joaquin Valley (SJV)

 North, Central, South.

Study Period

- Extended PM season (1 November 31 March)
- Study period 1996 2007
- Include recent years 2008-09 depending on data availability

CCOS/CRPAQS Study Work Plan

- 1. Collect, verify and assimilate data (20%)
 - Obtain surface meteorological, air quality measurements and daily weather maps.
 - Surface wind monitor consistency checking using software developed previously at Palazoglu Lab.
 - Design and implement a MATLAB procedure for imputation of bi-variate wind data.
- 2. Perform surface wind field clustering (30%)
 - Identify static (synoptic) meteorological patterns.
 - Characterize mesoscale flows and other meteorological parameters (temperature, precipitation, etc.)
 - Perform sequencing to identify pathways of synoptic evolution.

Work Plan (Continued ...)

- 3. Infer relationships between meteorology and PM dynamics (40%).
 - Characterize PM_{2.5} and PM₁₀ response under each meteorological condition.
 - Determine the fate of key PM components under meteorological conditions of interest.
 - Infer the effects of inter-annual variability in precipitation events on PM levels.
- 4. Document and summarize all activities performed and results obtained (10%).

Recent Progress and Future Work

- Pilot Bay Area study will serve as template for the analysis of all CCOS/CRPAQS air basins.
- Steps Completed :
 - Meteorological and air quality data obtained and formatted to be compatible with software.
- Ongoing Activity:
 - Quality assurance of wind measurements is being performed.
- Future Work and Expected Completion Dates
 - Wind field cluster analysis (June 2010)
 - Meteorological impact on PM dynamics (December 2010)
 - Final report submission (October-2011)

